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Effects of disorder on wave propagation in two-dimensional photonic crystals
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The electromagnetic transmittance of disordered two-dimensional photonic crystals composed of circular
cylinders is investigated as a function of wavelength and polarization. At short wavelengths, the transmittance
shows a band structure similar to that found in the optical absorption spectrum of amorphous semiconductors,
with impurity states increasingly appearing on the long wavelength side of the band gaps as the degree of
disorder is increased. In the long-wavelength limit, Anderson localization of waves is found, provided that the
wavelength is not so large that the random photonic crystal can be viewed as homogeneous. The localization
properties in this regime are studied and an analytic expression for the dependence of the localization length on
wavelength is derived. In the limit of extremely long wavelengths, the system homogenizes and can be
replaced by an equivalent one with uniform effective refractive index, whose form is derived for both polar-
izations. Analysis of the crossover between localization and homogenization is also presented.
@S1063-651X~99!18510-6#

PACS number~s!: 41.20.Jb, 42.70.Qs, 73.20.2r
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I. INTRODUCTION

Since the first suggestion by Yablonovitch@1# of the pos-
sibility of making materials which carry out the same fun
tion for photons as semiconductors do for electrons, the fi
of photonic crystals@the so-called photonic band-gap mat
rials ~PBG!# has been rapidly developing@2,3#. Now the
study of photonic crystals is a subject of intense investi
tions @4#. Many possible applications of such materials ha
been proposed: optical switches@5#, high-quality factor opti-
cal microcavities@6#, and optimized antennas@7#, to name
but a few.

Though the number of papers that study the propertie
photonic crystals is large@4#, to our knowledge only Sigala
et al. @8# have studied the important question of the effect
disorder on the transmittance of a PBG crystal. They u
the transfer matrix method@9#, which is a special case of
finite-difference method, to study the effects of disorder
the transmittance of two-dimensional photonic crystals co
posed of circular cylinders. They induced randomness
disordering the position, radius, or refractive index of t
cylinders and observed the resulting appearance of stat
the gap analogous to impurity states in semiconductors.
cause of computer time constraints, their resolution of
states induced in the gap was low.

Another important question that is closely related to d
ordered photonic crystals is the question of the Ander
localization of electromagnetic waves@10#. Localization
properties of electromagnetic waves in two-dimensio
problems were studied numerically by de Raedtet al. @11#,
who considered the transverse localization of light. McGu
et al. @12# numerically studied the localization of electro
magnetic waves emitted from a line source in a medium w
a transverse randomness. In their investigations the aut
@8,11,12# used a finite-difference method to study the loc
ization of electromagnetic waves. Therefore, they were
able to give an analytical description of localization.

Recently we developed an accurate and highly effici
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method for calculation of the transmittance properties of d
ordered photonic crystals@13# composed of circular cylin-
ders. The method is based on a generalization of the R
leigh method@14#. The photonic crystal under consideratio
is a stack ofNL gratings composed of circular cylinders as
Fig. 1. We have generalized the Rayleigh method to inc
porate many cylinders per unit cell of the grating. Numeric
efficiency and accuracy in calculating even very small tra
mittances are achieved by applying an inductive treatm
@15#, in which the reflection and the transmission coefficie
of a stack are found recursively by using the reflection a
transmission coefficients of single layers. This aspect of
treatment is similar to that employed by others@16–18#.

FIG. 1. The geometry of the problem. A plane wave of wa
vectork is incident at an angleu i on a stack of gratings compose
of Nc circular cylinders per unit cell~indicated by the heavy
dashes!, of radii ai and centersci . The period of the grating isD
and the separation of the layers isd, which is also the mean cylinde
separation. Reflected and transmitted waves are labeledR and T,
respectively.
6118 © 1999 The American Physical Society
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The purpose of this article is twofold. First we investiga
the effects of randomness on the transmittance of t
dimensional photonic crystals and study their homogen
tion properties in the long wavelength limit. Homogenizati
occurs when a photonic crystal can be viewed as a hom
neous medium with an effective dielectric constant, thus g
ing it the same optical properties as the actual med
@19,20#. If the wavelength is sufficiently large the wave do
not distinguish the inhomogeneities in the stack and one
replace the stack of gratings with an equivalent medium
constant refractive index. Second we investigate the local
tion of electromagnetic waves in disordered two-dimensio
lattices. In contrast to the finite-difference method, o
method allows us not only to calculate numerically the pro
erties of the random photonic crystals with high resolutio
but also to give an analytical description of localization a
homogenization.

The structure of this paper is as follows. In Sec. II we g
a brief outline of our method. In Sec. III we study the effec
of disorder on a photonic crystal in which the refractive
dex of the cylinders is randomized and consider the effect
disorder on the transmittance. We show that the behavio
the transmittance of the disordered photonic crystal is sim
to that of the absorption of amorphous semiconductors
Sec. IV we study homogenization and localization analy
cally and numerically. In all cases we find excellent agr
ment between theory and numerical simulations.

II. FORMULATION OF THE PROBLEM

Below we give a brief outline of our method in the sco
required for subsequent applications in Sec. IV. The desc
tion of the method itself was reported in more detail in@13#.

We consider a plane wave of wavelengthl incident in
free space at an angleu i on the structure shown in Fig. 1
Each layer of this structure is a periodic grating that ha
unit cell of lengthD, comprising a set ofNc nonoverlapping
cylinders. The refractive indices of the cylinders arenl , with
radii al , all of which can be different. The centers of th
cylinders are located on the same line and have thex coor-
dinatescl . Note that this restriction could be lifted and th
positions of the centers of the cylinders could be arbitr
inside the unit cell, but we do not treat this case here. T
stack consists ofNL such gratings of thicknessh in the y
direction, all of which are different. Thus the structure und
consideration hasNc NL cylinders, which are periodically
replicated in thex direction. The only essential requireme
is that all layers must have the same periodD. In the case of
incidence perpendicular to the gratings@the two-dimensional
~2D! case; see Fig. 1# the polarizations of waves are deco
pled and the problem can be specified by a single compo
(H transverse to the generators of the grating! V5Ez in the
case of TM polarization andV5Hz for TE polarization.

The solution of this problem is found in two steps. Fir
we find the reflectionR and transmissionT matrices of a
single grating. Then by using an inductive treatment@15# we
find the transmittance of the entire stack of gratings.

The essence of our approach to diffraction by a sin
grating is to exploit fully the geometry of the cylinders
determining the basis of functions to use. Cylindrical sy
metry suggests that the wave field in the vicinity of thelth
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cylinder in the unit cell of a grating can be written in th
Bessel expansion form

V~r l ,u l !5 (
m52`

`

@Am
l Jm~krl !1Bm

l Ym~krl !#e
imu l, ~1!

for r l.al , with a similar expansion forr l,al . These ex-
pansions are matched atr l5al using the continuity of tan-
gential components of electric and magnetic fields, wh
results in equations from which theAm

l and internal (r l

,al) coefficients can be eliminated, giving@21#

Am
l 52Mm

l Bm
l , ~2!

where

Mm
l 5

ZlJm8 ~nlkal !Ym~kal !2Jm~nlkal !Ym8 ~kal !

ZlJm8 ~nlkal !Jm~kal !2Jm~nlkal !Jm8 ~kal !
. ~3!

Here Zl5nl for Ez polarization andZl51/nl for Hz polar-
ization. The coefficientsMm

l determine the boundary cond
tion matrix. It is seen that the boundary conditions are sa
fied exactly through~3!. This is significant advantage of thi
method, which allows use of measured refractive indicesnl
of real materials@22#. Thus, the method can equally well b
applied to dispersive, dissipative cylinders or cylinders w
gain. Note that the contrast between the refractive index
the background and cylinders can be arbitrarily large.

The coefficientsBm
l are found using the Rayleigh identity

which is given by the relation@13#

(
m52`

`

Sn2mBm
l 1 iM n

l Bn
l 1 (

q51,qÞ l

Nc

(
m52`

`

Sn2m
l ,q Bm

l

52 i ~21!n exp@ i ~kcl sinu i1nu i !#, ~4!

with

Sm5 (
nÞ0

Hm
(1)~ unukD!exp~ imwn!exp~ ia0nD!, ~5!

Sm
l ,q5 (

n52`

`

Hm
(1)~kucq2cl1nDu!exp~ imwn!exp~ ia0nD!,

~6!

ap5k sinup5k sinu i12pp/D, ~7!

xp5H Ak22ap
2, ap

2,k2,

iAap
22k2, ap

2.k2.
~8!

Here Eq.~7! determines the angle of propagating ordersup ,
wherep is an integer andwn5pH(2n), and w05pH(cq

2cl) with H denoting the Heaviside function andHm
(1) is the

Hankel function. Twersky@23# developed convenient expres
sions for accurate evaluation of the global lattice sumsSm ,
which are faster and more accurate than the widely u
Ewald summation method@24#.

The sumsSm
l ,q are local lattice sums, which depend on t

cylinder l being treated as the local origin of coordinates, a
the cylinder qÞ l being considered as emitting waves t
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6120 PRE 60A. A. ASATRYAN et al.
wardsl. They can be obtained from global lattice sums us
Graf’s addition theorem@13#. The reflection and transmis
sion coefficientsRp andTp for orderp of the grating can be
written in the form@13#

Rp5
2

iDxp
(

m52`

`

(
l 51

Nc

Bm
l e2 i (mup1apcl ), ~9!

Tp5dp01
2

iDxp
(

m52`

`

~21!meimup(
l 51

Nc

Bm
l e2 iapcl,

~10!

with p being the order of diffraction~7!, some of which can
be evanescent.

The reflectionR and transmissionT matrices of the grat-
ing are also expressed in terms of theBm

l coefficients. In the
long wavelength limit we have only one propagating ord
~7! with p50 and an infinite set of evanescent orders.

Using the recurrence approach developed previously@15#,
we calculate the reflection and the transmission of the en
stack of gratings. In numerical work, the accuracy of t
method is determined by the number of modesNM52M
11 and plane-wave coefficientsNP52P11 retained, as-
suming the respective ranges are truncated to2M<m<M
and 2P<p<P; by retaining sufficient numbers of moda
coefficients and plane waves one can achieve any given
curacy. Illustrations of the accuracy of the method are giv
in @13#. All numerical results presented here haveNM and
NP chosen to yield five or more figures of precision.

III. DISORDERED TWO-DIMENSIONAL PHOTONIC
CRYSTALS. NUMERICAL RESULTS

One of the important questions in designing photo
band-gap materials is the ability to predict the effects of d
order or imperfections on the transmittance properties
such materials@8#. In our system this disorder can be intr
duced by means of randomization of either the positio
radii, or refractive indices of the cylinders. Before disord
ing all these parameters at once it is important to know
effects of each type of disorder separately. In this paper
consider the effects of disorder induced by randomization
only the refractive indices of the cylinders. Thus for cylind
l we set

nl5n̄1d l . ~11!

Here n̄ is the regular part of the refractive index of the cy
inders, whiled is a random variable uniformly distributed i
the range@2Q,Q#. The disorder given by~11! is somewhat
special because we retain the regular geometry of the la
as in a random substitution alloy in the analogous electro
case. As we will see, this has a distinctive effect on
transmittance properties of the disordered PBG crystal.
distinguish two different cases: thestrong interfacecase, in
which the average cylinder refractive index is substantia
different from that of the background~see Sec. III A! and the
weak interfacecase, in which the average refractive index
the cylinders is equal to that of the background~see Sec.
III B !.
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In all numerical simulations the period of the unit cell
taken to beD55 and there areNc55 cylinders in the unit
cell, which are equally spaced byd5D/551. Note that the
cylinders are considered dispersionless, and thus the un
length is arbitrary: our results can be applied in any wa
length region in which materials with the relevant refracti
index exist. There areNL510 layers in the stack with the
same thicknessd. The radii of the cylinders are all equa
with al50.3d. We mainly consider the case of normal inc
dence (u i50°) of a plane wave~see Fig. 1! though some
calculations for the case of off-axis incidence are also p
sented. The range of the random part of the refractive in
d is chosen to beQ50.2,0.4,0.6, or 0.8.

By disordering the refractive indicesnl of the cylinders
we investigate the changes in the structure of the ban
Mean properties are derived by averaging the logarithm
the transmittance over 100 realizations of the stack.
some wavelengths we carried out averaging over 400 r
izations and the transmittance obtained was indistinguish
from the case of 100 realizations on the scale used in
figures. However, we found that a reduction to 25 reali
tions led to discernable differences.

A. Strong interface case

In the strong interface case, the regular part of the refr
tive indices of the cylinders is given by~11!, with n̄53 in
our calculations. The refractive indexn̄53 is sufficient to
develop strong band gaps.

In Fig. 2 we present results for̂ln T& as a function of
wavelength for disorder, withQ50,0.2,0.4,0.8 in the case o
Ez polarization. The solid line represents the caseQ50 in
which we do not have disorder. In this case, the struct
develops two band gaps for wavelengths greater than 1d.
The first gap~counting from the right! is at wavelengthsl
'3d25d and the second gap is atl'1.9d22.1d. Addi-
tional calculations~not shown! demonstrate that as we in
crease the refractive indices of the cylinders the gaps shi
longer wavelengths, while they deepen as we increase
number of layers. In the band gaps, the density of sta
which is the number of propagating modes per unit f
quency, vanishes in the limit of an infinite medium. By di
ordering the photonic crystal we induce impurity states in

FIG. 2. Plot of^ ln T& vs wavelength forEz polarization forQ
50 ~solid!, Q50.2 ~dashed!, Q50.4 ~short dashed!, Q50.8 ~dot-
ted! for the strong interface case. Other parameters are given in
text.
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gap. This is similar to the case of the impurity states in dop
semiconductors in the gap between the valence and con
tion bands.

It is seen that the randomnessQ50.2 ~dashed line in Fig.
2! affects^ ln T& compared with that of the regular structu
(Q50, solid line! more in the first gap than the second~see
Fig. 2!. We can see that the part of the first gap betweel
'3.8d andl'4.7d has been strongly affected by the diso
der, with the transmission being greatly increased. The
fects of disorder can also be seen to be very different on
short wavelength side of the first gap 3.0d,l,3.8d from
that of the long wavelength side. The second gap is affec
in a way that the gap becomes slightly narrower. For
wavelengths outside the band gaps the randomnessQ50.2
reduces the transmittance of the regular structure betwee
gaps. For wavelengths greater thanl'5d, ^ ln T& is affected
slightly if Q50.2 because such long wavelengths cannot
solve the short-scale randomness.

As we increase the disorder toQ50.4, ^ ln T& is affected
more by the disorder and both band gaps become shallo
and narrower. In the regions 1.5d<l<1.75d and between
the gaps (2.2d<l<2.9d) ^ ln T& is reduced relative to the
regular case. This reduction also takes place at longer w
lengths 4.7d,l,5.2d, while for wavelengths greater tha
l.5.2d the effects of randomness are small. Randomn
with Q50.8 has strong effects on the second gap, in wh
the transmittance substantially increases compared with
case ofQ50.2. The first gap becomes shallower and its lo
wavelength part at 3.7d,l,4.7d is more strongly affected
than the shorter wavelength part at 3d,l,3.5d.

We can understand the behavior of states near the
edges by exploiting a direct analogy that exists between
wave equation in a periodic dielectric medium and t
Schrödinger equation in a periodic lattice@3#. Specifically,
the refractive index plays the role directly analogous to
potential energy in the electronic case, with highnl corre-
sponding to low potential@3#. In the electronic case, the ap
pearance of a band gap implies the coexistence of two s
at opposite sides of the gap with the same spatial period
as the lattice, one whose wave function is concentrate
atomic potential wells~regions of highnl in the cylinders in
the photonic analog!, and the other in regions of higher po
tential ~between the cylinders in the photonic case! @25#. The
states concentrated in regions of low potential appear on
low-energy side of the gap, corresponding to the lon
wavelength edge in the photonic analog.

When randomness~e.g., in the form of impurities! is in-
troduced into a perfect semiconductor lattice, impurity sta
appear just inside the bandgap@25#. These states are spatial
localized on the impurities. In the photonic case, the beh
ior seen in Fig. 2 is consistent with this picture: randomn
in the cylinders’ refractive indices gives rise to states ins
the long-wavelength edge of the gap, whereas the sh
wavelength edge is less affected because there is no ran
ness in the background medium in which these states
concentrated. We have also checked this interpretation
computing the transmittance for a stack where the mean
fractive index of the cylinders was randomly chosen, b
with an average smaller than unity. In this case, the sh
wavelength side of the gap was most affected by rand
ness, in accord with our theoretical picture.
d
uc-

f-
e

d
e

the

-

er

e-

ss
h
he
g

ap
e

e

tes
ty
in

he
-

s

v-
s
e
rt-
m-
re

by
e-
t
rt
-

We can see the approximately linear behavior of^ ln T& at
the wavelengths 3.6d<l<3.8d and 3.9d<l<4.8d near the
long-wavelength edge of the band gap~see Fig. 2!. This
behavior is reminiscent of the absorption spectrum of dis
dered semiconductors, which exhibit Urbach@26# and Tauc
@27# tails near the band edges.

One of the characteristics of a random variable is the s
dard error of the meanssem, which characterizes the unce
tainty of a quantity averaged overNr realizations; it is given
by

ssem5
s

ANr

, ~12!

wheres is the standard deviation of the individual measu
ments. In Fig. 3 we plotssemfor ^ ln T&. The standard error o
the meanssem is greater for randomnessQ50.4 than forQ
50.2 as expected. We can see thatssem has peaks at the
wavelengthsl'2.9d andl'3.9d which correspond to the
positions of the edges of the first gap in Fig. 2, while t
peaks atl'1.8d and l'2.1d of ssem correspond to the
positions of the edges of the second gaps in Fig. 2.

The largest values ofssem seen in Fig. 3 occur aroundl
'4d. At this wavelength the impurity states are localized
relatively short scales, and are thus much more affected
local randomness than longer-scale states at other w
lengths. The fact that the largest values ofssemoccur toward
the long-wavelength sides of the two gaps is also consis
with this picture, and with the electronic analog discuss
earlier, since these states are concentrated in the cylin
where the randomness in the refractive index occurs. Co
spondingly, in systems where the mean cylinder refract
index is less than that of the background, we find thatssemis
largest on the short wavelength side of the gap.

In Fig. 4 we represent results for^ ln T& as a function of
wavelength for disorderQ50.2 and different angles of inci
denceu i50°,30°,45°. We see that at normal incidence t
right edge of the gap is affected more by the randomn
compared with the left edge of the gap; note that for
angles, the short wavelength side of the gap is smooth, w
the long wavelength side has sharp features. This behavi
similar to the case of normal incidence. As we increase

FIG. 3. Standard error of the mean@Eq. ~12!# of ^ ln T& vs wave-
length forEz polarization withQ50.2 ~solid! andQ50.4 ~dashed!.
Other parameters are given in the text.
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6122 PRE 60A. A. ASATRYAN et al.
incident angleu i from normal incidence, the center of th
gap shifts towards shorter wavelengths and the gap deep

Figure 5 is similar to Fig. 2 but forHz polarization. The
solid line represents the case of an ordered photonic cry
with Q50. The structure develops two band gaps for wa
lengths greater than 1.3d. The first gap, which is at wave
lengthsl'2.7d23d, is very weak, while the second gap
at l'1.4d22.2d. As we can see, the second gap forHz
polarization is stronger than for the case ofEz polarization.
The second gap consists of two parts separated by a na
band atl'1.62d. The number of layersNL510 is not suf-
ficient to develop fully the first gap forHz polarization. As
we increase the number of layers fromNL510 to NL
540,80 we observe the development of this gap.

The randomnessQ50.2 has a small effect on this wea
gap atl'2.8d23.1d ~see Fig. 5!. But as we increase th
randomness toQ50.6 this gap almost vanishes. It is se
that the randomness has strong effects on the transmitt
properties in the second gap forHz polarization. As one ex-
pects, the narrow feature atl'1.62d is rapidly destroyed by
randomness. As the amount of randomnessQ increases, the
second gap becomes shallower. Similarly to the case oEz
polarization, we observe features reminiscent of Urbach
Tauc tails.

The above results demonstrate that disordered phot
crystals have similarities to disordered solids. The rando

FIG. 4. Plot of^ ln T& vs wavelength forEz polarization foru i

50° ~solid!, u i530° ~short dashed!, u i545° ~dashed!. The disor-
der parameter for all figures isQ50.2. Other parameters are give
in the text.

FIG. 5. Similar to Fig. 2, but forHz polarization. HereQ50
~solid!, 0.2 ~dashed!, 0.6 ~dotted!, and 0.8~dot-dashed!. Other pa-
rameters are given in the text.
ns.
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ness affects the transmittance ofHz-polarized waves more
than for the case ofEz polarization. For both polarization
we observe the appearance of states in the gap.

B. Weak interface case

In this section we consider the effects of disorder for t
weak interface case, in which the refractive index of cyl
ders is given by the relationnl511d. In this case, when
Q50, the refractive index of the cylinders is equal to t
refractive index of the background and the medium is th
uniform. In Fig. 6 we present the dependence of^ ln T& on
wavelength in the case ofEz polarization forQÞ0. It is seen
that gaps develop in the vicinity of Wood anomaliesl
5D/p55,5/2,5/3. . . ., whereupu51,2,3,. . . , @28#. At these
wavelengthsuapu5k and two of the diffraction orders~7! of
the layer become parallel to the surface of the grating. Wo
anomalies have long been known to be spectral region
which grating properties are very sensitive to modificatio
of any structural characteristics. In the context of studies
photonic crystals, they correspond to light lines, which a
defined by the dispersion equations of diffracted orders@see
~7! and ~8!#. The gaps being opened up correspond to
intersection points of two light lines.

As the amount of randomness increases the gaps incr
in depth. Though these gaps are weak compared to the st
interface case~see Sec. III A!, by adding more layers in the
stack it is possible to make them stronger. In a way we
say that we can design random photonic crystals which h
the average refractive constant equal to the refractive c
stant of the background but which develop gaps at wa
lengths corresponding to the Wood anomaliesl5D/upu ~see
previous paragraph!.

Figure 7 is similar to Fig. 6, but is forHz polarization. In
this case the disordered photonic crystal does not dev
gaps in the vicinity of Wood anomalies, in contrast to t
case ofEz polarization ~Fig. 6!. For Q50.2 ~solid line!,
^ ln T& slightly increases with wavelength. As we increase
randomness toQ50.4 ~dashed line! and 0.8~dotted line!,
^ ln T& also decreases. This reduction is greater for sho
wavelengths than for long wavelengths.

FIG. 6. Dependence of̂ln T& on wavelength for the case ofEz

polarization forQ50.2 ~solid!, Q50.4 ~dashed!, andQ50.8 ~dot-
ted! for a weak interface case. Other parameters are given in
text.
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IV. LONG-WAVELENGTH LIMIT

In the long-wavelength limit in which we have only on
propagating order, the scattering matrices become sca
and it is possible to calculate analytically the transmittan
and reflectance of the photonic crystal and find the effec
refractive indices. In Sec. IV A we derive the effective d
electric constant of the photonic crystal for both polariz
tions for the case of normal incidence and we investigate
localization behavior of waves in this long wavelength
gime in Sec. IV B.

A. Homogenization of a disordered photonic crystal

In the long-wavelength limit we show that each layer h
mogenizes and that the stack of layers thus homogenizes
single slab with the appropriate effective dielectric consta
and thicknessNLd ~i.e., the total thickness of the stack!. The
homogenization takes place because at such long w
lengths the wave cannot resolve the structure of the phot
crystal. Here we derive the effective dielectric constant of
structure in Fig. 1.

First, we consider the case ofEz polarization. In the limit
of long wavelengths it is sufficient to truncate the Raylei
identity ~4! and to keep only the modal coefficients of zero
order B0

l ~monopole approximation!—see Sec. II. In this
limit we have only one propagating order.

Whenl is sufficiently large,kal!1, and we expand the
Bessel functions in the boundary condition coefficientsMm

l

~3! in Taylor series and obtain@21#

M0
l '

4

f a2~« l21!
, ~13!

M1
l '

32p

f 2a4~« l21!
, ~14!

where f 5pa2/d2 is the filling fraction,« l5nl
2 , anda5kd.

The long wavelength asymptotics for global lattice sums
given by @23#

S0'
2

kD
, ~15!

FIG. 7. Same as Fig. 6, but forHz polarization.
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S2'2
4p i

3k2D2
. ~16!

In the case of normal incidence all global lattice sums of o
order S2n2150 vanish. The local lattice sums can be a
proximated as

S0
l ,q'

2

aD
. ~17!

In this approximation we obtainB0
l '21/M0

l . After substi-
tution of this expression into~10! we find the reflection co-
efficient of zeroth orderR0 of the layer to be

R0'
ia

2

1

Nc
(
l 51

Nc

f l~« l21!. ~18!

Quite generally, the equation of reflection coefficient of
single layer with a dielectric constant«eff and thicknessd in
the long-wavelength limit can be approximated as@15#

r 0'
ia

2
~«eff21!. ~19!

By comparing equations~18! and~19! we find that the effec-
tive dielectric constant for the grating is

«eff511
1

Nc
(
l 51

Nc

f l~« l21!. ~20!

The effective dielectric constant of the random layer can
found by averaging~20!

^«eff&511
1

Nc
K (

l 51

Nc

f l~« l21!L . ~21!

where ^•••& denotes ensemble averaging. Iff l and « l are
uncorrelated, the effective dielectric constant of the rand
layer can be found by averaging~20!, which gives

^«eff&511 f S n̄21
Q2

3
21D , ~22!

wheref is the average of the filling fractionf 5^ f l&. If each
layer is statistically equivalent, each grating in the stack
mogenizes to the same value of the effective dielectric c
stant~20!. Therefore the stack of layers also homogenizes
this value.

In Fig. 8 we plot on a logarithmic scale the inverse of t
average of the logarithm of the transmittance with the para
eters as in Sec. III A for randomnessQ50.2. The same
quantity is calculated for a slab of a dielectric with the e
fective dielectric constant̂«eff& from ~22!. Excellent agree-
ment between two curves is seen even for wavelength
low asl'5d. The resonances in the range 5d,l,40d are
Fabry-Perot effects. This plot implies that the random se
dielectric cylinders homogenizes to a dielectric slab with
fective dielectric constant«eff given by the relation~22!.

Now we consider the case of theHz polarization. In anal-
ogy to ~13! and ~14! we find @21#
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M0
l '

32p

f l
2a4~« l21!

, ~23!

M1
l '

4

f la
2

« l11

« l21
. ~24!

However, now the dipole approximation is required as
dipole coefficientsB61

l are larger than the monopole coef
cientsB0

l for each cylinder. In the case of weak randomne

d l!n̄ the solution of the Rayleigh identity~4! can be ap-
proximated as

B21
l 'B1

l '
i

S21 iM 1
l 1 (

q51,qÞ l

Nc

S2
l ,q

, ~25!

B0
l 'O~a3!. ~26!

By taking into account the relation

(
q51,qÞ l

Nc

S2
l ,q'~Nc

221!S2 , ~27!

derived in the Appendix, the reflection of a single layer c
be written in the form

R052
ia

2

1

Nc
(
l 51

Nc 2 f l

« l11

« l21
2

p

3
f l

. ~28!

From~28!, and in a similar manner as forEz polarization, the
effective dielectric constant can be written in the form

«eff511
1

Nc
(
l 51

Nc 2 f l

« l11

« l21
2

p

3
f l

, ~29!

FIG. 8. Dependence of22NL /^ ln T& on l for Ez polarization
~solid line! and Q50.2. The dashed line represents the inverse
the transmittance of a slab with effective dielectric constant«eff

from Eq. ~22! and thicknessNLd.
e

s

n

which is valid for the case of weak randomnessd l!n̄. The
effective dielectric constant of the random layer can be fou
by averaging~29! over the refractive index distribution. I
the filling fractions f l are the same for all cylinders, an
exploiting the weakness of randomness,^«eff& takes the form

^«eff&511
2 f

n̄211

n̄221
2

p

3
f

2

4Q2f F3n̄2212
p f

3
~3n̄211!G

3F n̄2112
p f

3
~ n̄221!G3 .

~30!

In the case when randomnessQ50 we deduce from~30!

^«eff&511
2 f

n̄211

n̄221
2

S2

p
f

. ~31!

Here, S2 /p5p/3 for a single layer, andS2 /p51 for an
infinite stack of layers. The latter case is the Maxwell G
nett formula @31#. The small difference betweenp/3 and
unity occurs because, forHz polarization, it is necessary to
take into account evanescent couplings between the laye
the stack. In Fig. 9 we plot the inverse of^ ln T& versus wave-
length for the same parameters as in Sec. III A for rando
nessQ50.2 ~solid line!. The same quantity is also show
estimated for a slab of a dielectric with the effective diele
tric constant«eff ~30! ~dashed line!. Excellent agreement be
tween the two results is again seen for wavelengths as s
asl'D55d.

For a small number of cylinders per unit cell one c
solve the Rayleigh identity~4! using computer algebra an
find the effective dielectric constant without the requireme
of weak randomness. For example in the case of two cy
ders per unit cellNc52 the effective dielectric constan
takes the form

f
FIG. 9. Same as Fig. 8, but forHz polarization. The dashed line

represents the inverse of the transmittance of a slab with effec
dielectric constant«eff from Eq. ~31! and thicknessNLd.
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«eff511

1

f 1

«111

«121
1

1

f 2

«211

«221
1

p

3

S 1

f 1

«111

«121
2

p

12D S 1

f 2

«211

«221
2

p

12D2
p2

16

,

~32!

where« i , and f i are the dielectric constants and filling fra
tions of cylinders. Equation~32! is an extension of the Max
well Garnett formula@31# for the effective dielectric constan
of a composite material, when we have two inclusions ins
the unit cell. If the cylinders have the same dielectric co
stant and filling fractions,~32! reduces to~31!.

B. Crossover from localization to homogenization

Localization of electromagnetic waves can occur wh
waves undergo multiple scattering off a random potent
The destructive interference completely changes the cha
ter of the wave transport from free propagation to diffus
propagation and, as scattering increases further, the con
of diffusion tends to zero, localization sets in and phot
transport stops completely. One of the characteristics of
calization is the localization lengthl * which is defined by
the relation@29#

l *

d
52 lim

NL→`

2NL

^ ln T&
, ~33!

whereT is the transmittance of the stack ofNL layers andd
is the thickness of each layer. The localization length para
eterizes the transmission properties of a random semi-infi
system and represents a length of attenuation. This is rou
the scale over which the constant of diffusion tends to z
due to complete destructive interference being establishe

Usually, in numerical calculations a localization scali
length l is calculated using a finite value forNL @30#, with

l

d
52

2NL

^ ln T&
. ~34!

In the long-wavelength limitl incorporates Anderson loca
ization and attenuation due to Fabry-Perot reflections
tween the first and the last interfaces of the slab~for more
discussion see@15#!. Thus the difference betweenl * and l is
that the latter takes into account the effects of the multi
reflections from the first and the last interfaces of the sta
For sufficiently long stacksl approachesl * .

In @15# we obtained a general expression for the locali
tion scaling lengthl of plane waves normally incident on
stack ofNL layers of thicknessd and random complex di
electric constant«s . In the case of dielectric layers the lo
calization scaling length in the long-wavelength limit can
written in the form

d

l
5

a2

8
@^h2&1Na«̄2#. ~35!

Here «̄5^«s&21, a5kd andh is the random component o
the dielectric constant with zero average^h&50 andNa is
the switch term given by
e
-

n
l.
c-

ant
n
-

-
te
ly
o
.

e-

e
k.

-

Na521
sin~NLa!sin@~NL22!a#

NL sin2 a
. ~36!

The switch term converges rapidly to the number of layers
the stackNa→NL as the wavelength increases (a→0),
while for the short wavelengths it is of order unityNa'1.
The first term in~35!, which does not depend on the numb
of layers in the stack, determines the localization lengthl * .
The second term describes multiple reflections from the fi
and last interfaces of the stack.

We consider below the case ofEz polarization. Let the
filling fractions f l of the cylinders be same. After substitu
tion of ~11! into ~20!, «eff can be written in the form

«eff511 «̄1h, ~37!

where«̄ andh are given by the relations~22!

«̄5 f ~ n̄221!1
f Q2

3
, ~38!

h5
2 f n̄

Nc
(
l 51

Nc

d l1
f

Nc
(
l 51

Nc

d l
22

f Q2

3
. ~39!

By averaging uniformly distributed random variablesd l over
the range@2Q,Q# we obtain

^h2&5
4 f 2n̄2Q2

3Nc
1

4 f 2Q4

45Nc
. ~40!

After substitution of~40! into ~35! and taking into accoun
d!1, the localization length for the weak interface casen̄
51 for l.D takes the form

l *

d
5

3Nc

2p2f 2Q2 S l

dD 2

. ~41!

Equation ~41! implies that the localization lengthl * is
proportional to the square of the wavelength, which is sim
lar to the case of one-dimensional problems@30#. Another
interesting feature of~41! is the proportionality of the local-
ization length to the number of cylindersNc per unit cell.
This does not imply an unphysical divergence asNc in-
creases, because~41! is only valid forl.Ncd; if Nc exceeds
l/d, multiple propagating orders must be incorporated a
the above analysis breaks down.

After substitution of~40! and ~39! into ~35! the localiza-
tion scaling length can be written in the form

l

d
5

3Nc

2p2f 2Q2S 11
NcNaQ2

12 D S l

dD 2

. ~42!

In Fig. 10 we plot the dependence of (l /d)/(l/d)2 on
wavelengthl/d for the weak interface case for the sam
parameters as in Sec. III B and randomnessQ50.4. The
solid line represents our numerical simulation of~34!, the
long dashed line is based upon Eq.~41!, while the short-
dashed line represents estimate~42!, in which the switch
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term is replaced by its asymptotic limitNa5NL . The dotted
line that describes the crossover from localization to hom
enization is given by Eq.~42!. It is seen that there is a cros
over from localization to homogenization nearl'4NLd. At
such long wavelengths the effects of scattering between
cylinders diminish and structure is effectively homogeneo

V. CONCLUSION

We have studied the effects of disorder on tw
dimensional photonic crystals composed of circular cyl
ders. As shown, the optical transmittance properties of
ordered photonic crystals are reminiscent of the absorp
spectra of amorphous semiconductors, particularly in t
they exhibit tail-like features near the band edges.

In the limit of long wavelengths the structure homo
enizes and we obtain the effective dielectric constants
disordered photonic crystals for both polarizations. In t
region our numerical simulations and analytic calculatio
are in excellent agreement with each other.

In theweak interfacecase, in which the average refractiv
index of the cylinders is equal to that of the background,
studied the transmittance properties of such random phot
crystals for both polarizations. Such photonic crystals
velop gaps at points where light lines intersect~i.e., double
Rayleigh wavelengths! for the case ofEz polarization, while
for the case ofHz polarization we did not observe the deve
opment of the band gaps at these wavelengths.

In the limit of long wavelengths we have obtained t
localization length behavior as the function of waveleng
We have shown that the localization length is proportiona
the square of the wavelength similarly to the case of o
dimensional stratified random layers. Interestingly, the loc
ization length is also proportional to the number of cylinde
Nc per unit cell. We have shown that for long wavelengt
there is a crossover from localization to homogenization.
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FIG. 10. Dependence ofl on wavelength Eq.~34! ~solid line! for
Ez polarization andQ50.4. The upper dashed line represents
localization length behaviorl * Eq. ~41!, while the lower dashed
line is given by Eq.~42! in which we use the asymptotic value fo
Na5NL . The dotted line represents the crossover from the lo
ization to homogenization predicted by Eq.~42!.
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APPENDIX: DERIVATION OF THE RELATION „27…

By applying Graf’s addition theorem@32# the local lattice
sum S2

lq ~7! for the case of normal incidence can be e
pressed in the form@13#

S2
lq5 iY2~kucq2cl u!1 (

n52`

`

S2n12J2n~kucq2cl u!.

~A1!

The long-wave asymptotic of the global lattice sumsSn are
@23#

S2n'
i ~21!n22n21~2p!2nB2n

pna2n
, ~A2!

whereB2n are Bernoulli numbers

B2n5
~21!n212~2n!!

~2p!2n
z~2n!, ~A3!

z~2n!5(
s51

`
1

s2n
. ~A4!

Herez(2n) is the Riemann’s zeta function. The asympto
values forY(kucq2cl u) andJ2n(kucq2cl u) ask→0 are@32#

Y2~kucq2cl u!'2
4

pk2ucq2cl u2
, ~A5!

Jn~kucq2cl u!'
knucq2cl un

2nn!
. ~A6!

After substitution of~A6!, ~A5!, and~A2! into ~A1! S2
lq takes

the form

S2
lq'2

4i

pk2ucl2cqu2
2

8i

pk2ucl2cqu2

3 (
n51

`

~2n21!
~cl2cq!2n

D2n
z~2n!. ~A7!

The series in~A7! can be calculated in closed form. W
substitute~A4! into ~A7! and by changing the order of sum
mation and using the relation

(
s51

`

~a1sr!qs5
aq

12q
1

rq

~12q!2
, ~A8!

~see@33#, p. 7! ~A7! can be written in the form

S2
lq'2

4i

pk2ucl2cqu2
2

8i

pk2ucl2cqu2
(
s51

`
a2s21a4

~s22a2!2
,

~A9!

wherea denotes

a5
cl2cq

D
. ~A10!

e

l-
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The series in~A9! can be calculated using the relations~see
@34#, p. 687, Eq.~25!, Eq. ~35!!.

(
s51

`
1

~s22a2!2
52

1

2a4
1

p

4a3
cot~pa!1

p2

4a2
csc2~pa!,

~A11!

(
s51

`
s2

~s22a2!2
52

p

4a
cot~pa!1

p2

4
csc2~pa!.

~A12!

By using the relations~A11!–~A12!, S2
lq can be written as

S2
lq'2

4p i

~kD!2
csc2S p

cl2cq

D D . ~A13!
/

oc

r,

et

n

.
J.

A.
By taking into account Eqs.~16! and ~A13! takes the form

S2
lq'3S2csc2S p

cl2cq

D D . ~A14!

In the case in which the distanced5D/Nc between the cen-
ters of the cylinders per unit cell is same we can writecq
5cl1(q2 l )d and ~A14! takes the form

S2
lq'3S2csc2S p

q2 l

Nc
D . ~A15!

Without loss of generality we can setl 51 and~27! can then
be obtained using the relation@see@34#, p. 644, Eq.~5!#

(
s51

N21

csc2S sp

N D5
N221

3
. ~A16!
c-

s

r
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