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Effects of disorder on wave propagation in two-dimensional photonic crystals
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The electromagnetic transmittance of disordered two-dimensional photonic crystals composed of circular
cylinders is investigated as a function of wavelength and polarization. At short wavelengths, the transmittance
shows a band structure similar to that found in the optical absorption spectrum of amorphous semiconductors,
with impurity states increasingly appearing on the long wavelength side of the band gaps as the degree of
disorder is increased. In the long-wavelength limit, Anderson localization of waves is found, provided that the
wavelength is not so large that the random photonic crystal can be viewed as homogeneous. The localization
properties in this regime are studied and an analytic expression for the dependence of the localization length on
wavelength is derived. In the limit of extremely long wavelengths, the system homogenizes and can be
replaced by an equivalent one with uniform effective refractive index, whose form is derived for both polar-
izations. Analysis of the crossover between localization and homogenization is also presented.
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PACS numbes): 41.20.Jb, 42.70.Qs, 73.26x

[. INTRODUCTION method for calculation of the transmittance properties of dis-
ordered photonic crystalgl3] composed of circular cylin-
Since the first suggestion by Yablonovitgh of the pos-  ders. The method is based on a generalization of the Ray-
sibility of making materials which carry out the same func- leigh method'14]. The photonic crystal under consideration
tion for photons as semiconductors do for electrons, the fields & stack o, gratings composed of circular cylinders as in
of photonic crystal§the so-called photonic band-gap mate- Fig. 1. We have generalized the Rayleigh method to incor-
rials (PBG)] has been rapidly developini®,3]. Now the  Porate many cylinders per unit cell of the grating. Numerical
study of photonic crystals is a subject of intense investigagfficiency and accuracy in calculating even very small trans-
tions [4]. Many possible applications of such materials haveMmittances are achieved by applying an inductive treatment
been proposed: optical switch, high-quality factor opti-  [15], in which the reflection and the transmission coefficients
cal microcavities/6], and optimized antenndd], to name Of @ stack are found recursively by using the reflection and
but a few. transmission coefficients of single layers. This aspect of our
Though the number of papers that study the properties dfeatment is similar to that employed by oth¢t6-18.
photonic crystals is larget], to our knowledge only Sigalas
et al.[8] have studied the important question of the effect of
disorder on the transmittance of a PBG crystal. They used
the transfer matrix methof®], which is a special case of a
finite-difference method, to study the effects of disorder on
the transmittance of two-dimensional photonic crystals com-
posed of circular cylinders. They induced randomness by
disordering the position, radius, or refractive index of the

cylinders and observed the resulting appearance of states in OO O o O QQE O ot
the gap analogous to impurity states in semiconductors. Be- S O S
cause of computer time constraints, their resolution of the .

states induced in the gap was low.

Another important question that is closely related to dis-
ordered photonic crystals is the question of the Anderson
localization of electromagnetic waved0]. Localization
properties of electromagnetic waves in two-dimensional
problems were studied numerically by de Raetlal. [11],
who considered the transverse localization of light. McGurn
etal. [12] numerically studied the localization of electro- £ 1. The geometry of the problem. A plane wave of wave
magnetic waves emitted from a line source in a medium withectork is incident at an anglé; on a stack of gratings composed
a transverse randomness. In their investigations the authogs N, circular cylinders per unit cellindicated by the heavy
[8,11,17 used a finite-difference method to study the local-dashey of radii a, and centers; . The period of the grating i®
ization of electromagnetic waves. Therefore, they were noknd the separation of the layersdisvhich is also the mean cylinder
able to give an analytical description of localization. separation. Reflected and transmitted waves are latiRladd T,

Recently we developed an accurate and highly efficientespectively.
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The purpose of this article is twofold. First we investigatecylinder in the unit cell of a grating can be written in the
the effects of randomness on the transmittance of twoBessel expansion form
dimensional photonic crystals and study their homogeniza-
tion properties in the long wavelength limit. Homogenization
occurs when a photonic crystal can be viewed as a homoge-
neous medium with an effective dielectric constant, thus giv-
ing it the same optical properties as the actual mediunfor r;>a,, with a similar expansion for,<a,. These ex-
[19,20. If the wavelength is sufficiently large the wave doespansions are matched gt=a, using the continuity of tan-
not distinguish the inhomogeneities in the stack and one cagential components of electric and magnetic fields, which
replace the stack of gratings with an equivalent medium ofesults in equations from which thA'm and internal
constant refractive index. Second we investigate the localiza< a,) coefficients can be eliminated, givifgi]
tion of electromagnetic waves in disordered two-dimensional
lattices. In contrast to the finite-difference method, our Al =-M! B, 2
method allows us not only to calculate numerically the prop-
erties of the random photonic crystals with high resolution,where
but also to give an analytical description of localization and
homogenizagtion. y P | :ZI‘]r,n(nIkal)Ym(kal)_'Jm(nlkal)Yr,n(kal)
The structure of this paper is as follows. In Sec. Il we give ™z (nikay) Im(kay) = Im(nikay) J; (kay)
a brief outline of our method. In Sec. Il we study the effects o
of disorder on a photonic crystal in which the refractive in- Here Z,=n, for E, polarization andZ,=1/n; for H, polar-
dex of the cylinders is randomized and consider the effects deation. The coefficients/,, determine the boundary condi-
disorder on the transmittance. We show that the behavior dfon matrix. It is seen that the boundary conditions are satis-
the transmittance of the disordered photonic crystal is similafied exactly through3). This is significant advantage of this
to that of the absorption of amorphous semiconductors. Ifnethod, which allows use of measured refractive indiges
Sec. IV we study homogenization and localization analyti-of real material§22]. Thus, the method can equally well be
cally and numerically. In all cases we find excellent agreeapplied to dispersive, dissipative cylinders or cylinders with
ment between theory and numerical simulations. gain. Note that the contrast between the refractive index of
the background and cylinders can be arbitrarily large.
The coe1‘ficientsB'm are found using the Rayleigh identity,

©

V(r,6)= 2 [Andm(kr)+BpYn(kr)le™, (1)

()

Il. FORMULATION OF THE PROBLEM which is given by the relatiofl3]
Below we give a brief outline of our method in the scope oc Ne oc
required for subsequent applications in Sec. IV. The descrip- B ' +iMm'BL+ g.a g
tion of the method itself was reported in more detaif 13]. mzz—oo Sn-mBm nen qzlzq# m;—w nomem

We consider a plane wave of wavelengthincident in
free space at an angk on the structure shown in Fig. 1.
Each layer of this structure is a periodic grating that has Qith
unit cell of lengthD, comprising a set o, nonoverlapping
cylinders. The refractive indices of the cylinders are with W ) )
radii a;, all of which can be different. The centers of the Sm= ;O Hy (In[kD)exp(ime,)expliagnD),  (5)
cylinders are located on the same line and havextheor- "
dinatesc, . Note that this restriction could be lifted and the %
positions of the centers of the cylinders qould be arbitrary g.9= > Hﬁ,})(klcq—q+nD|)exp(imcpn)exp(ia0n D),
inside the unit cell, but we do not treat this case here. The n=—
stack consists oN; such gratings of thickness in the y (6)
direction, all of which are different. Thus the structure under

=—i(—1)"exdi(kc sing;+na,)], 4)

consideration hadN;N, cylinders, which are periodically ap=ksinf,=ksing;+2mp/D, @)
replicated in thex direction. The only essential requirement 2 1o
is that all layers must have the same peiixdn the case of Vk?— pr ap<k®,
incidence perpendicular to the gratingise two-dimensional Xp~ 5 (8)
(2D) case; see Fig.]1the polarizations of waves are decou- i aﬁ—kz, > k2.

pled and the problem can be specified by a single component

(H transverse to the generators of the gratig-E, in the ~ Here Eq.(7) determines the angle of propagating ordeégs

case of TM polarization and=H, for TE polarization. wherep is an integer andp,=wH(—n), and ¢o=mH(c,
The solution of this problem is found in two steps. First, —¢) with H denoting the Heaviside function ahtfy is the

we find the reflectionR and transmissiom matrices of a Hankel function. Twersky23] developed convenient expres-

single grating. Then by using an inductive treatmer we  sions for accurate evaluation of the global lattice siBps

find the transmittance of the entire stack of gratings. which are faster and more accurate than the widely used
The essence of our approach to diffraction by a singléEwald summation methof®4].

grating is to exploit fully the geometry of the cylinders in ~ The sumsS;:? are local lattice sums, which depend on the

determining the basis of functions to use. Cylindrical sym-cylinder| being treated as the local origin of coordinates, and

metry suggests that the wave field in the vicinity of tiie  the cylinderg#!| being considered as emitting waves to-
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wardsl. They can be obtained from global lattice sums using Oy ¥

Graf's addition theoreni13]. The reflection and transmis- xj‘ i

sion coefficientRR, and T, for orderp of the grating can be [k ]

written in the form[13] -5 M 7

A L] 4

2 4 % i ]

— —i(ml,+ a C|) — _ L | .

® N Ly :

2 . ¢ B —15 -

Tp=5po+mm;x(_l)melm9p|=ElBlme Iap(:l’ _II|IIII|||I||||||||||||||_
(10) 2 3 4 5 6

A/d
with p being the order of diffractioii7), some of which can FIG. 2. Plot of(InT) vs wavelength folE, polarization forQ

be evanescent. . _ =0 (solid), Q=0.2 (dashed, Q=0.4 (short dashexl Q=0.8 (dot-
) The reflectionR and 'FransmISSIOFTImatrlcgs_ of the grat- ted) for the strong interface case. Other parameters are given in the
ing are also expressed in terms of B¢ coefficients. In the  text.

long wavelength limit we have only one propagating order

(7) with p=0 and an infinite set of evanescent orders. In all numerical simulations the period of the unit cell is
Using the recurrence approach developed previdusly  taken to beD =5 and there aré.=5 cylinders in the unit
we calculate the reflection and the transmission of the entirge||, which are equally spaced loy=D/5=1. Note that the
stack of gratings. In numerical work, the accuracy of thecylinders are considered dispersionless, and thus the unit of
method is determined by the number of modé§=2M  |ength is arbitrary: our results can be applied in any wave-
+1 and plane-wave coefficientdp=2P+1 retained, as- |ength region in which materials with the relevant refractive
suming the respective ranges are truncated-dd<m<M  index exist. There ar®&, =10 layers in the stack with the
and —P<p=P; by retaining sufficient numbers of modal same thicknessl. The radii of the cylinders are all equal,
coefficients and plane waves one can achieve any given agith a,=0.3d. We mainly consider the case of normal inci-
curacy. lllustrations of the accuracy of the method are giverjence ¢,=0°) of a plane wavesee Fig. 1 though some
in [13]. All numerical results presented here haNg and  calculations for the case of off-axis incidence are also pre-

Np chosen to yield five or more figures of precision. sented. The range of the random part of the refractive index
o is chosen to b€)=0.2,0.4,0.6, or 0.8.
I1l. DISORDERED TWO-DIMENSIONAL PHOTONIC By disordering the refractive indicay of the cylinders
CRYSTALS. NUMERICAL RESULTS we investigate the changes in the structure of the bands.

] ) ) o ~ Mean properties are derived by averaging the logarithm of
One of the important questions in designing photoniCihe transmittance over 100 realizations of the stack. For

band-gap materials is the ability to predict the effects of dissome wavelengths we carried out averaging over 400 real-
order or imperfections on the transmittance properties Ofzations and the transmittance obtained was indistinguishable
such material$g]. In our system this disorder can be intro- from the case of 100 realizations on the scale used in the

duced by means of randomization of either the positionsfigyres. However, we found that a reduction to 25 realiza-
radii, or refractive indices of the cylinders. Before disorder-tions led to discernable differences.

ing all these parameters at once it is important to know the
effects of each type of disorder separately. In this paper we
consider the effects of disorder induced by randomization of
only the refractive indices of the cylinders. Thus for cylinder  In the strong interface case, the regular part of the refrac-
| we set tive indices of the cylinders is given byL1), with n=3 in
_ our calculations. The refractive index=3 is sufficient to
n=n+4. (1)) develop strong band gaps.

o In Fig. 2 we present results fqinT) as a function of
Heren is the regular part of the refractive index of the cyl- wavelength for disorder, witp=0,0.2,0.4,0.8 in the case of
inders, whiles is a random variable uniformly distributed in E, polarization. The solid line represents the c&se0 in
the rangd — Q,Q]. The disorder given byll) is somewhat which we do not have disorder. In this case, the structure
special because we retain the regular geometry of the latticdevelops two band gaps for wavelengths greater thas. 1.5
as in a random substitution alloy in the analogous electronid@he first gap(counting from the rightis at wavelengthsa
case. As we will see, this has a distinctive effect on the=3d—5d and the second gap is at~1.9d—2.1d. Addi-
transmittance properties of the disordered PBG crystal. Wé&onal calculations(not shown demonstrate that as we in-
distinguish two different cases: tlgrong interfacecase, in  crease the refractive indices of the cylinders the gaps shift to
which the average cylinder refractive index is substantialljjlonger wavelengths, while they deepen as we increase the
different from that of the backgrour{dee Sec. lll Aand the  number of layers. In the band gaps, the density of states,
weak interfacecase, in which the average refractive index ofwhich is the number of propagating modes per unit fre-
the cylinders is equal to that of the backgroufs®e Sec. quency, vanishes in the limit of an infinite medium. By dis-
I B). ordering the photonic crystal we induce impurity states in the

A. Strong interface case
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gap. This is similar to the case of the impurity states in doped
semiconductors in the gap between the valence and conduc- 0.3
tion bands.

It is seen that the randomne®s=0.2 (dashed line in Fig.

2) affects(In T) compared with that of the regular structure
(Q=0, solid line more in the first gap than the secofste

Fig. 2. We can see that the part of the first gap between
~3.8 andA~4.7d has been strongly affected by the disor-
der, with the transmission being greatly increased. The ef-
fects of disorder can also be seen to be very different on the
short wavelength side of the first gap 8<0\<3.8d from

that of the long wavelength side. The second gap is affected
in a way that the gap becomes slightly narrower. For the
wavelengths outside the band gaps the randomQes§.2 FIG. 3. Standard error of the mefBq. (12)] of (In T) vs wave-
reduces the transmittance of the regular structure between tighgth forE, polarization withQ =0.2 (solid) andQ = 0.4 (dashed
gaps. For wavelengths greater thes¥5d, (InT) is affected  Other parameters are given in the text.

slightly if Q=0.2 because such long wavelengths cannot re-

solve the short-scale randomness.

As we increase the disorder @=0.4, {InT) is affected
more by the disorder and both band gaps become shallow
and narrower. In the regions & =<1.75 and between
the gaps (2.@<\<2.9d) (InT) is reduced relative to the
regular case. This reduction also takes place at longer wav
lengths 4.d<\<5.2d, while for wavelengths greater than
A>5.2d the effects of randomness are small. Randomnesaard error of the mean which characterizes the uncer-

1 — i 1 sems
with Q=0.8 has strong effects on the second gap, in Wh'CQaint of a quantity averaged ov8l, realizations; it is given
the transmittance substantially increases compared with the y q y 9 ' ' 9
case ofQ=0.2. The first gap becomes shallower and its long
wavelength part at 3d<\ <4.7d is more strongly affected
than the shorter wavelength part at<3\ <3.5d. O sen= ,

We can understand the behavior of states near the gap \/N—r
edges by exploiting a direct analogy that exists between the
wave equation in a periodic dielectric medium and the
Schralinger equation in a periodic lattid®]. Specifically, ~Whereo is the standard deviation of the individual measure-
the refractive index plays the role directly analogous to thements. In Fig. 3 we plotrse,for (In T). The standard error of
potential energy in the electronic case, with highcorre-  the meanog.,is greater for randomne€3= 0.4 than forQ
sponding to low potentidl3]. In the electronic case, the ap- =0.2 as expected. We can see that, has peaks at the
pearance of a band gap implies the coexistence of two statggavelengths\~2.9d and\~3.9d which correspond to the
at opposite sides of the gap with the same spatial periodicitpositions of the edges of the first gap in Fig. 2, while the
as the lattice, one whose wave function is concentrated ipeaks at\~1.8d and A=2.1d of o, correspond to the
atomic potential well§regions of highn, in the cylinders in  positions of the edges of the second gaps in Fig. 2.
the photonic analgg and the other in regions of higher po-  The largest values aFs., Seen in Fig. 3 occur around
tential (between the cylinders in the photonic ca25]. The  ~4d. At this wavelength the impurity states are localized on
states concentrated in regions of low potential appear on theelatively short scales, and are thus much more affected by
low-energy side of the gap, corresponding to the longlocal randomness than longer-scale states at other wave-
wavelength edge in the photonic analog. lengths. The fact that the largest valuessgf,,occur toward

When randomnesg.g., in the form of impuritiesis in-  the long-wavelength sides of the two gaps is also consistent
troduced into a perfect semiconductor lattice, impurity statesvith this picture, and with the electronic analog discussed
appear just inside the bandgd}b]. These states are spatially earlier, since these states are concentrated in the cylinders
localized on the impurities. In the photonic case, the behawvhere the randomness in the refractive index occurs. Corre-
ior seen in Fig. 2 is consistent with this picture: randomnesspondingly, in systems where the mean cylinder refractive
in the cylinders’ refractive indices gives rise to states insidandex is less than that of the background, we find that,is
the long-wavelength edge of the gap, whereas the shortargest on the short wavelength side of the gap.
wavelength edge is less affected because there is no random-In Fig. 4 we represent results fdn T) as a function of
ness in the background medium in which these states amgavelength for disorde® =0.2 and different angles of inci-
concentrated. We have also checked this interpretation bgience,=0°,30°,45°. We see that at normal incidence the
computing the transmittance for a stack where the mean reight edge of the gap is affected more by the randomness
fractive index of the cylinders was randomly chosen, butcompared with the left edge of the gap; note that for all
with an average smaller than unity. In this case, the shorangles, the short wavelength side of the gap is smooth, while
wavelength side of the gap was most affected by randomthe long wavelength side has sharp features. This behavior is
ness, in accord with our theoretical picture. similar to the case of normal incidence. As we increase the

—=

£

4 5 8
A/d

We can see the approximately linear behaviofIofT) at
rpe wavelengths 3=\ <3.8d and 3.@91I<\<4.8d near the
ong-wavelength edge of the band gé&ee Fig. 2 This
behavior is reminiscent of the absorption spectrum of disor-
lered semiconductors, which exhibit Urbd@6] and Tauc
27] tails near the band edges.

One of the characteristics of a random variable is the stan-

o
(12
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FIG. 4. Plot of(InT) vs wavelength foiE, polarization for FIG. 6. Dependence dfin T) on wavelength for the case &,

=0° (solid), ,=30° (short dashexl §,=45° (dashedl The disor-  Polarization forQ=0.2 (solid), Q=0.4 (dashegl andQ=0.8 (dot-
der parameter for all figures @=0.2. Other parameters are given ted for a weak interface case. Other parameters are given in the
in the text. text.

inciden_t angled; from normal incidence, the center of the ,ass affects the transmittance l8f-polarized waves more
gap shifts towards shorter wavelengths and the gap deepeqﬁan for the case o, polarization. For both polarizations

Figure 5 is similar to Fig. 2 but foH, polarization. The ;
LS . e observe the appearance of states in the gap.
solid line represents the case of an ordered photonic crystg\f PP gap

with Q=0. The structure develops two band gaps for wave-
lengths greater than d3 The first gap, which is at wave-
lengthsh ~2.7d— 3d, is very weak, while the second gap is
at \~1.4d—2.2d. As we can see, the second gap foy In this section we consider the effects of disorder for the
p0|arization is stronger than for the casebf p0|arization_ weak interface case, in which the refractive index of cylin-
The second gap consists of two parts separated by a narrd@#rs is given by the relation;=1+é. In this case, when
band at\~1.62. The number of layerdl, =10 is not suf- Q=0, the refractive index of the cylinders is equal to the
ficient to develop fully the first gap folfl, polarization. As  refractive index of the background and the medium is thus
we increase the number of layers frohd =10 to N uniform. In Fig. 6 we present the dependence(lofT) on
=40,80 we observe the development of this gap. wavelength in the case &, polarization forQ+0. It is seen
The randomnes®=0.2 has a small effect on this weak that gaps develop in the vicinity of Wood anomalizs
gap atA~2.8d—3.1d (see Fig. $ But as we increase the =D/p=5,5/2,5/3 ..., where|p|=1,2,3, ..,[28]. At these
randomness t@Q=0.6 this gap almost vanishes. It is Seenwavelengths’,ap| =k and two of the diffraction order&) of
that the randomness has strong effects on the transmittangge layer become parallel to the surface of the grating. Wood
properties in the second gap filr, polarization. As one ex-  anomalies have long been known to be spectral regions in
pects, the narrow feature &t= 1.6 is rapidly destroyed by \yhich grating properties are very sensitive to modifications
randomness. As the amount of randomn@sisicreases, the ¢ any structural characteristics. In the context of studies of

second gap becomes shallower. Similarly to the cas,of atonic crystals, they correspond to light lines, which are
polarization, we observe features reminiscent of Urbach angefined by the dispersion equations of diffracted ordsee
Tauc tails. ;

The above results demonstrate that disordered photonﬁ) and (8)]. The gaps being opened up correspond to the

crystals have similarities to disordered solids. The random- tersection points of two light Ilngs. .
As the amount of randomness increases the gaps increase

B. Weak interface case

| ————— in depth. Though these gaps are weak compared to the strong
Fr e . interface casé¢see Sec. Il A, by adding more layers in the
—to L \\‘*’f ] stack it is possible to make them stronger. In a way we can
- \\/ . say that we can design random photonic crystals which have
A —-20 - the average refractive constant equal to the refractive con-
% u ] stant of the background but which develop gaps at wave-
v —30 F 3 lengths corresponding to the Wood anomalesD/|p| (see
F ] previous paragraph
-40 - -] Figure 7 is similar to Fig. 6, but is fad, polarization. In
- ] this case the disordered photonic crystal does not develop
—50 1'5 ' é ' 2|5 : :'J’ ' 3'5 ' '4 gaps in the vicinity of Wood anomalies, in contrast to the
' }\/d ' case ofE, polarization (Fig. 6). For Q=0.2 (solid line),

(InT) slightly increases with wavelength. As we increase the
FIG. 5. Similar to Fig. 2, but foH, polarization. HereQ=0  randomness t®=0.4 (dashed ling and 0.8(dotted line,
(solid), 0.2 (dashed 0.6 (dotted, and 0.8(dot-dashef Other pa- (InT) also decreases. This reduction is greater for shorter
rameters are given in the text. wavelengths than for long wavelengths.
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4q7i

> e 1o

In the case of normal incidence all global lattice sums of odd
order S,,_1=0 vanish. The local lattice sums can be ap-
proximated as

2

i S~ —5- (17)
_0.8 -II | 1111 | 1111 | 1111 | 1111 | 1111
2 3 4 5 6 7 In this approximation we obtaiB)~ —1/M}. After substi-
A/d tution of this expression int¢10) we find the reflection co-

FIG. 7. Same as Fig. 6, but fot,, polarization, efficient of zeroth ordeR, of the layer to be

. N
la <

IV. LONG-WAVELENGTH LIMIT Ro~ > Ni = fi(g;—1). (18
o =

In the long-wavelength limit in which we have only one
propagating order, the scattering matrices become scalafguite generally, the equation of reflection coefficient of a
and it is possible to calculate analytically the transmittancesingle layer with a dielectric constasty and thicknessl in
and reflectance of the photonic crystal and find the effectivéhe long-wavelength limit can be approximated[25]
refractive indices. In Sec. IV A we derive the effective di- .
electric constant of the photonic crystal for both polariza- ; %'_01( ~1) (19
tions for the case of normal incidence and we investigate the 07 T\ Beff '
localization behavior of waves in this long wavelength re-
gime in Sec. IV B. By comparing equationdl8) and(19) we find that the effec-

tive dielectric constant for the grating is

A. Homogenization of a disordered photonic crystal 1 N

In the long-wavelength limit we show that each layer ho- eerf=1+ N, 21 filei—1). (20)

mogenizes and that the stack of layers thus homogenizes to a

single slab with the appropriate effective dielectric constantThe effective dielectric constant of the random layer can be
and thicknes®_d (i.e., the total thickness of the stacRhe  found by averaging20)

homogenization takes place because at such long wave-

lengths the wave cannot resolve the structure of the photonic 1 [ Ne

crystal. Here we derive the effective dielectric constant of the (ee) =1+ N > file—1) ). (21)
structure in Fig. 1. c\l=t

First, we consider the case Bf, polarization. In the limit where (--+) denotes ensemble averaging.f|fand e, are

of long wavelengths it is sufficient to truncate the Rayleighyncorrelated, the effective dielectric constant of the random
identity (4) and to keep only the modal coefficients of zeroth layer can be found by averagirig0), which gives

order B'O (monopole approximatiop—see Sec. Il. In this
limit we have only one propagating order. _ 2
When\ is sufficiently largeka,<1, and we expand the (gemy=1+f| n*+ ?—1), (22)
Bessel functions in the boundary condition coefficielits,
(3) in Taylor series and obtaif21] wheref is the average of the filling fractioh=(f ). If each
layer is statistically equivalent, each grating in the stack ho-
M~ 4 (13 mogenizes to the same value of the effective dielectric con-
0 fa?(e;—1) stant(20). Therefore the stack of layers also homogenizes to
this value.
In Fig. 8 we plot on a logarithmic scale the inverse of the
| 327 average of the logarithm of the transmittance with the param-
Ml”my (14)  eters as in Sec. Il A for randomne$3=0.2. The same
|

quantity is calculated for a slab of a dielectric with the ef-

fective dielectric constante ) from (22). Excellent agree-

wheref = 7a?/d? is the filling fraction,e,=n?, anda=kd. ~ ment between two curves is seen even for wavelengths as

The long wavelength asymptotics for global lattice sums ardOW asA~5d. The resonances in the range-S\ <40d are

given by[23] Fabry-Perot effects. This plot implies that the random set of
dielectric cylinders homogenizes to a dielectric slab with ef-
fective dielectric constande; given by the relatior(22).

S~ i (15) Now we consider the case of th&, polarization. In anal-
kD’ ogy to (13) and(14) we find[21]
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FIG. 8. Dependence of 2N, /(InT) on \ for E, polarization FIG. 9. Same as Fig. 8, but fét, polarization. The dashed line

(solid line) and Q=0.2. The dashed line represents the inverse ofrepresents the inverse of the transmittance of a slab with effective
the transmittance of a slab with effective dielectric constat  dielectric constant . from Eq. (31) and thickness\, d.
from Eq.(22) and thicknes#N, d.

which is valid for the case of weak randomnessn. The
| 32m (23) effective dielectric constant of the random layer can be found
f|2a4(8|_1)’ by averaging(29) over the refractive index distribution. If
the filling fractionsf, are the same for all cylinders, and
exploiting the weakness of randomne&s,y) takes the form

Ml 4 8|+1 (24)
! f|6¥2 g1 1
4Q%|3n?—1— 7T—f(3F2+ 1)
However, now the d|pole approximation is required as the 2f 3

dipole coefficientsB', 1 are larger than the monopole coeffi- (eem) =1+ 3

cientsBY, for each cylinder. In the case of weak randomness =

— 2
8,<<n the solution of the Rayleigh identit{4d) can be ap- -1
proximated as

n2
+1_Zf 3
3

_ f
n24+1- %(n2—1)

(30

i In the case when randomne®s=0 we deduce fron{30)

B' ,~Bi~ NG , (25)
S+iMi+ X s
q=1g#I 2f
(Ee) =1t =————. (31)
Bo~0(a?). (26) T =
n°—1
By taking into account the relation
Ne Here, S, /7= x/3 for a single layer, and,/7=1 for an
qu~ N2 1)S,, (27) infinite stack of layers. The latter case is the Maxwell Gar-

a=La*! nett formula[31]. The small difference between/3 and

unity occurs because, fdi, polarization, it is necessary to
take into account evanescent couplings between the layers of
the stack. In Fig. 9 we plot the inverse @h T) versus wave-
) length for the same parameters as in Sec. lll A for random-
'_ai 28) nessQ=0.2 (solid line). The same quantity is also shown
2 N =1 g+ e+l m estimated for a slab of a dielectric with the effective dielec-
e —1 3 tric constante o (30) (dashed ling Excellent agreement be-
tween the two results is again seen for wavelengths as small

From(28), and in a similar manner as f&, polarization, the aSA~D=5d.

effective dielectric constant can be written in the form For a small humber Qf cyI|nQers per unit cell one can
solve the Rayleigh identity4) using computer algebra and
of find the effective dielectric constant without the requirement
—" (290  of weak randomness. For example in the case of two cylin-
Ne=1e+1 o ders per unit cellN.=2 the effective dielectric constant

g—1 3! takes the form

derived in the Appendix, the reflection of a single layer ca
be written in the form

pzd

C

RO:_

I
Seﬁ 1+
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1 e+l 1e,+l = sin(N_ a)sin (N, —2) «]
fie,—1 fre,—1 3 No=2+ : i - ’ (36)
14 181 2 82 N, Sir a
Eeft 1 81+1 m\[1e,+1 m\ =’
f1 o1 1 12 E sle_ 12/ 16 The switch term converges rapidly to the number of layers in

(32 the stackN,—N_ as the wavelength increases0),
while for the short wavelengths it is of order uni,~
whereg;, andf; are the dielectric constants and filling frac- The first term in(35), which does not depend on the number
tions of cylinders. EquatiofB2) is an extension of the Max- 0f layers in the stack, determines the localization lerigth
well Garnett formuld31] for the effective dielectric constant The second term describes multiple reflections from the first
of a composite material, when we have two inclusions inside&nd last interfaces of the stack.
the unit cell. If the cylinders have the same dielectric con- We consider below the case &f, polarization. Let the
stant and filling fractions(32) reduces tq31). filling fractions f, of the cylinders be same. After substitu-
tion of (11) into (20), e can be written in the form
B. Crossover from localization to homogenization

o , ce=1+e+7, (37)
Localization of electromagnetic waves can occur when

waves undergo multiple scattering off a random potentialyheres and 7 are given by the relation@2)

The destructive interference completely changes the charac-

ter of the wave transport from free propagation to diffusive Q2

propagation and, as scattering increases further, the constant e=f(n’—1)+ —- (38
of diffusion tends to zero, localization sets in and photon

transport stops completely. One of the characteristics of lo- oty Ne foNe £Q2

calization is the localization lengttt which is defined by = > 5+ N > 8- = (39)
the relation[29] c =1 ci=1
|* . 2Np By averaging uniformly distributed random variablgsover
i NlL'Tw“n Ty (33 the rangd — Q,Q] we obtain
2,22 204
whereT is the transmittance of the stack Nf layers andd (7?)= 4f'n°Q + 4r'Q _ (40)
is the thickness of each layer. The localization length param- 3N¢ 45N,

eterizes the transmission properties of a random semi-infinit
system and represents a length of attenuation. This is rough%‘cter substitution of(40) into (35) and taking into account
the scale over which the constant of diffusion tends to zer@<1, the localization length for the weak interface case
due to complete destructive interference being established.=1 for A>D takes the form

Usually, in numerical calculations a localization scaling

lengthl is calculated using a finite value fo¢, [30], with I 3N;  (M)?
T o d (41)
I 2N, o T
d  (InT) (34) Equation (41) implies that the localization length* is

proportional to the square of the wavelength, which is simi-

In the long-wavelength limit incorporates Anderson local- lar to the case of one-dimensional problef8§]. Another
ization and attenuation due to Fabry-Perot reflections beinteresting feature of4l) is the proportionality of the local-
tween the first and the last interfaces of the dlls more  ization length to the number of cylindefs. per unit cell.
discussion seEl5]). Thus the difference betweéh andl is  This does not imply an unphysical divergence Mg in-
that the latter takes into account the effects of the multiplecreases, becaugél) is only valid forA>N_d; if N. exceeds
reflections from the first and the last interfaces of the stacka/d, multiple propagating orders must be incorporated and
For sufficiently long stacks approaches*. the above analysis breaks down.

In [15] we obtained a general expression for the localiza- After substitution of(40) and (39) into (35) the localiza-
tion scaling length of plane waves normally incident on a tion scaling length can be written in the form
stack of N, layers of thicknessl and random complex di-

electric constantg. In the case of dielectric layers the lo- I 3N, A2
calization scaling length in the long-wavelength limit can be d- N_N_Q? (42)
written in the form 2772f2Q2( 1+ Cl—;)
d 2 — .
T:%[<,’2>+Nagz]_ (35) In Fig. 10 we plot the dep_endence affd)/(n/d)? on
wavelengthA/d for the weak interface case for the same

parameters as in Sec. Ill B and randomné€¥ss 0.4. The
Heres=(ss)—1, a=kd and 7 is the random component of solid line represents our numerical simulation (8%), the
the dielectric constant with zero average)=0 andN, long dashed line is based upon Egl), while the short-
the switch term given by dashed line represents estimd#®), in which the switch
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AR L ALL B APPENDIX: DERIVATION OF THE RELATION  (27)

By applying Graf's addition theorefi82] the local lattice
sum 8'2q (7) for the case of normal incidence can be ex-
pressed in the forril13]

(o]

o
LR L

|

FRRE S £ o0

SE=iYa(Kleg=el)+ X Sons2dan(Klcq—ci).

(1/d) (A/a)=2
5

20 —
r ] (A1)
0 *""'1"0 — ""1"(')0 — "'1'800 The long-wave asymptotic of the global lattice suBjsare
A/d [23]
FIG. 10. Dependence dbn wavelength Eq(34) (solid line) for (= 1)"22""1(21)?"B,,
E, polarization andQ=0.4. The upper dashed line represents the San™ a2 ’ (A2)
localization length behaviol* Eg. (41), while the lower dashed
line is given by Eq(42) in which we use the asymptotic value for \yhereB,, are Bernoulli numbers
N,=N, . The dotted line represents the crossover from the local-
ization to homogenization predicted by Ed42). (—1)"12(2n)!
o= ——{(2n), (A3)
(2m)

term is replaced by its asymptotic limit,=N . The dotted

line that describes the crossover from localization to homog- "

enization is given by Eq42). It is seen that there is a cross- £(2n)= 2 i (A4)

over from localization to homogenization neesx4N d. At '

such long wavelengths the effects of scattering between the

cylinders diminish and structure is effectively homogeneousHere £(2n) is the Riemann’s zeta function. The asymptotic
values forY(k|cq—c||) andJyy(k|cy—cy|) ask—0 are[32]

V. CONCLUSION

We have studied the effects of disorder on two- Ya(kleg—cil)~— —kzlc “ol (AS5)
dimensional photonic crystals composed of circular cylin- AT
ders. As shown, the optical transmittance properties of dis- K N
ordered photonic crystals are reminiscent of the absorption J(Kle.—c/ )~ |Cq_cl| A6
: . . n(kleq—ci))~ ———— (A6)
spectra of amorphous semiconductors, particularly in that 2"n!

they exhibit tail-like features near the band edges.

In the limit of long wavelengths the structure homog- After substitution ofA6), (A5), and(A2) into (A1) qu takes
enizes and we obtain the effective dielectric constants fothe form
disordered photonic crystals for both polarizations. In this

region our numerical simulations and analytic calculations Iq 4i 8i
are in excellent agreement with each other. Sy~ 212 2~ 2
. . : . mk?|ci—cql®  mk|ci—cyl
In theweak interfacecase, in which the average refractive
index of the cylinders is equal to that of the background, we * (c )2n
studied the transmittance properties of such random photonic X E (2n—1) D—§(2n) (A7)

crystals for both polarizations. Such photonic crystals de- n=1

velop gaps at points where light lines interséct., double
Rayleigh wavelengthgor the case of, polarization, while
for the case oH, polarization we did not observe the devel-
opment of the band gaps at these wavelengths.

The series in(A7) can be calculated in closed form. We
substitute(A4) into (A7) and by changing the order of sum-
mation and using the relation

In the limit of long wavelengths we have obtained the o a r

localization length behavior as the functior_l of wave_length. > (a+sr)qs:_q+ _q2 (A8)

We have shown that the localization length is proportional to s=1 -4 (1-q)

the square of the wavelength similarly to the case of one-

dimensional stratified random layers. Interestingly, the local{s€€[33], p. 7) (A7) can be written in the form

ization length is also proportional to the number of cylinders ] ) "

N per unit cell. We have shown that for long wavelengths S~ 4i _ 8i 2 a’s’+a’

there is a crossover from localization to homogenization. wk2|c,—cq|2 mk?|c,—c | 1 (s?— )2( )
A9

ACKNOWLEDGMENTS
wherea denotes

Helpful discussions with B. L. Altshuler, D. R. McKen-
zie, and C. M. Soukoulis are acknowledged. The Australian a= Ci—Cq (A10)
Research Council supported this work. D °



PRE 60

The series iMA9) can be calculated using the relatioisee
[34], p. 687, Eq.(25), Eq. (35)).

+ - cotma)+ —cse(ma)
—COl ma —CS ma),
4a8 432

(A11)

1 1

2at

T P
(s2— az)_z =~ gacot ma)+ Tcsé(wa).

(A12)
By using the relation$A11)—(A12), S'Zq can be written as

4q7i
(kD)2

C|_Cq
D

(A13)

S~ — csc?( T

EFFECTS OF DISORDER ON WAVE PROPAGATIOML. . .
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By taking into account Eq€16) and (A13) takes the form

cq).

In the case in which the distande= D/N; between the cen-
ters of the cylinders per unit cell is same we can wate
=c,+(g—1)d and(A14) takes the form

Ci—
D

S~3S,cs¢ (A14)

ko

Si~ 3Szcsc?( qu—_I) . (A15)

Without loss of generality we can set 1 and(27) can then
be obtained using the relatigsee[34], p. 644, Eq.(5)]

Nt sm| N2-1
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